Critical Decisions for Asset Allocation via Penalized Quantile Regression
نویسندگان
چکیده
منابع مشابه
Asset allocation strategies based on penalized quantile regression
It is well known that quantile regression model minimizes the portfolio extreme risk, whenever the attention is placed on the estimation of the response variable left quantiles. We show that, by considering the entire conditional distribution of the dependent variable, it is possible to optimize different risk and performance indicators. In particular, we introduce a risk-adjusted profitability...
متن کاملNonparametric M-quantile Regression via Penalized Splines
Quantile regression investigates the conditional quantile functions of a response variables in terms of a set of covariates. Mquantile regression extends this idea by a “quantile-like” generalization of regression based on influence functions. In this work we extend it to nonparametric regression, in the sense that the M-quantile regression functions do not have to be assumed to be linear, but ...
متن کاملSmoothness selection for penalized quantile regression splines.
Modern data-rich analyses may call for fitting a large number of nonparametric quantile regressions. For example, growth charts may be constructed for each of a collection of variables, to identify those for which individuals with a disorder tend to fall in the tails of their age-specific distribution; such variables might serve as developmental biomarkers. When such a large set of analyses a...
متن کاملAsymptotics for penalized spline estimators in quantile regression
Quantile regression predicts the τ -quantile of the conditional distribution of a response variable given the explanatory variable for τ ∈ (0, 1). The aim of this paper is to establish the asymptotic distribution of the quantile estimator obtained by penalized spline method. A simulation and an exploration of real data are performed to validate our results.
متن کاملA Parallel Algorithm for Large-scale Nonconvex Penalized Quantile Regression
Penalized quantile regression (PQR) provides a useful tool for analyzing high-dimensional data with heterogeneity. However, its computation is challenging due to the nonsmoothness and (sometimes) the nonconvexity of the objective function. An iterative coordinate descent algorithm (QICD) was recently proposed to solve PQR with nonconvex penalty. The QICD significantly improves the computational...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2019
ISSN: 1556-5068
DOI: 10.2139/ssrn.3436894